AV Use-Cases & Regulation

Egil Juliussen, Ph.D. Consultant & Columnist EE Times September 8, 2021

- What are leading Autonomous Vehicle use cases?
- How do AV regulation impact AV use-cases?
- How could deployment of AV use cases evolve?

Content by Egil Juliussen | EE Times

Autonomous Trucks & Goods AVs

AV Use-Cases	Key Players
Autonomous trucks: L4 Getting increasing attention and investments due to simplicity of hub-to-hub trucking & pandemic. Mostly in U.S. and China	 TuSimple: US & China Waymo Via Aurora Innovation Plus: US & China Embark & Kodiak Einride: EU
Goods delivery AVs: L4 Desirable due to pandemic, growth of e-commerce, meal & grocery delivery	 Delivery companies Logistics companies Retailers Restaurants
Sidewalk goods AVs: L4 Small, walking speed	 Starship Technologies Amazon
Road goods-only AVs: L4 Purpose built for goods	 Nuro Neolix: China
Road goods AVs: L4 Vans, small trucks	 Argo, Aurora, Waymo Udelv

Source: TuSimple

Source: Starship

Source: Waymo

Source: Amazon

Source: Nuro

Source: Udelv

Robotaxis & Fixed Route AVs

AV Use-Cases	Key Players
Robotaxis: L4 AVs for ride-hailing. Get most attention due to the vast market potential. Some pandemic delays. Mostly in U.S. and China	 Waymo One: Phoenix Motional: Las Vegas Cruise, Mobileye, Zoox Lyft, Uber & Didi AutoX, Baidu & Pony.ai Momenta & WeRide
Fixed route AVs: L4 Shared rides for people transport as part of smart cities & closed venues. Negative pandemic impact	 EasyMile: France Local Motors May Mobility Navya: France
Personal AVs: L4 Not likely until 2025+ Robotaxi-like deployment	 Mobileye-Intel Robotaxi AV software platform players

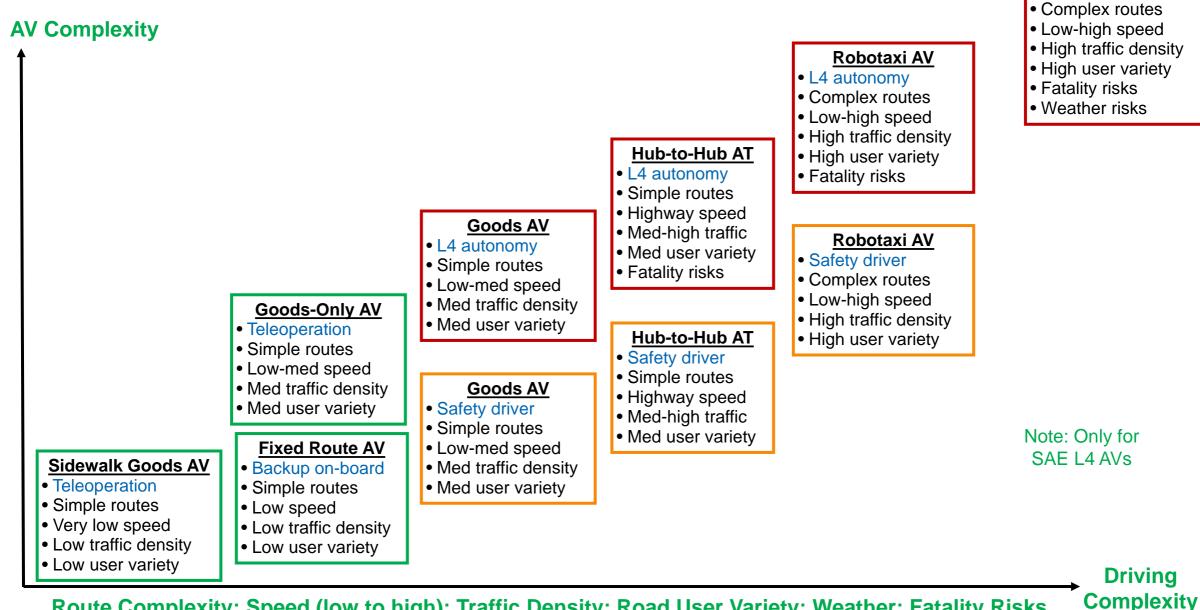
Source: Waymo; Driverless operation

Source: Zoox; No driver controls

Source: Cruise; BEV

Source: Cruise; No driver controls

Source: Local Motors; Ollie 3D printed


Safety: Human Driver vs. AV Software Driver 1 of 2

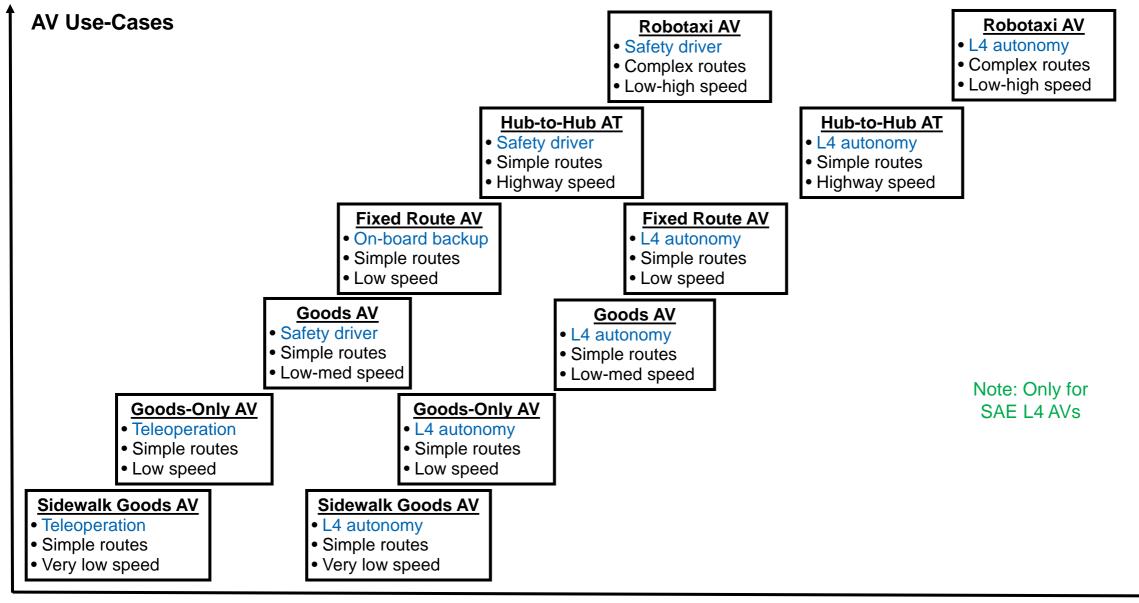
Issues	Human Driver	AV Software Driver
Driver's license	 Test to prove traffic rules proficiency Driving test to prove driving skills Difficulty varies by state & country 	 Traffic rules built into software AV software driver's license? When? How? AV software testing permit variations
Driving skills & experience	 Months-years-decades of experience Few hundred miles to 1M+ miles Driving skill has bell shaped curve 	 Road driving: Waymo; 25M+ miles Virtual driving: Waymo; 25B+ miles Driving skill has penetration growth shape
Distraction: Visual, manual & cognitive	 Variety: kids, eating, daydreaming etc. Growing smartphone distraction Cause about 18% of all U.S. crashes 	 No software distraction Sensors are possible visual issues Very small factor in AV crashes
Speeding	 Common problem for many drivers Cause about 20% of all U.S. crashes 	 Never; not allowed in software Should not be a factor in AV crashes
DUI: Driving Under Influence	 Alcohol impaired driving is common Drug impaired driving is growing A factor in about 20% of all U.S. crashes 	 Not applicable Could cybersecurity attacks be an issue? Should not be a factor in AV crashes
Reaction Time	 Experience & individual factors Drivers' distraction level 	 Faster reaction than human drivers More sensors and 360-degree view
Drowsy or tired	Common problem	► Never

Safety: Human Driver vs. AV Software Driver 2 of 2

Issues	Human Driver	AV Software Driver
Weather impact & weather judgement	 Better than AV, but often over-confident Common problem: drive too fast in fog Driving on flooded roads, etc. 	 Mostly testing fair weather driving Better weather performance expected Judgement: Clear go/no-go in software
Edge cases	 Advantage! Drivers can handle edge cases Better communication with road users Humans are good at fault mitigation 	 Main current disadvantage Hard to predict pedestrian actions Key to match human driver skills
Crash avoidance & system failure	 Human driving skill level is key Driver must minimize distractions Driver must not speed Driver must not be impaired 	 AV software driving skill & experience Fail-soft software architecture Hardware redundancy Teleoperation as backup
Future questions & Unintended ADAS consequences	 Will L1-L2-L3 autos have less crashes? Will L1-L2-L3 autos dull driving skills? Safety impact of senior driver growth 	 How to communicate with road actors? How quickly will edge cases be learned How long are safety drivers needed?
Summary	 3 issues account for 58% of U.S. crashes: Distraction, speeding & DUI Edge cases are rarely a problem 	 These 3 issues have no impact on crashes by AV software driver Edge case improvements are needed
Edge case: New driving situation or new variations, which is unknown to the AV driver software		

AV Use Cases vs. Complexity

Route Complexity; Speed (low to high); Traffic Density; Road User Variety; Weather; Fatality Risks


Source: Egil Juliussen; September 2021

AT=Autonomous Truck; AV=Autonomous Vehicle

Personal AV

L4 autonomy

AV vs. Autonomy Degree

Limited Autonomy

High Autonomy

Source: Egil Juliussen; September 2021 AT=Autonomous Truck; AV=Autonomous Vehicle

Autonomous Vehicle Regulation Overview

	Key Information	Other Information
ISO 22737 Low-speed autonomous driving (LSAD)	 Low-speed autonomous driving for pre-defined routes Within specific L4 operational design domains (ODD) Use-cases: Goods delivery & fixed route AVs Specifies performance, system & test requirements 	 Many last mile applications Likely to have interactions with ITS Bus routes likely to be popular use-cases No specification of sensor technology
German AV regulation	 Legal framework for AV deployment L4 use-cases with focus on MaaS AV operation expected in 2022 Type Approval required before legal use 	 Focused only on simplest AV use-cases Personal AVs are not included yet Teleoperation is included in AV regulation Extensive testing required
France AV regulation	 Highway Code & Transport Code allows AVs Legalized complete framework for AV usage Use-cases are pre-defined routes and zones 	 Expected to start in September 2022 Type Approval (homologation) required before use Similar to ISO 22737 regulation
U.S. AV regulation	 NHTSA ADAS L2 & ADS crash data reporting NHTSA AV proposal released Dec 3, 2020 "Framework for Automated Driving System Safety" 	 Started June 29, 2021; lasts 3 years Written comments ended April 1, 2021 AV regulation not expected until 2022 or 2023
China AV regulation	 March 24, 2021-MPS: Road Traffic Safety Act for AVs April 7, 2021-MITT: Draft regulation for L3 and L4 May 2021: AV legislation introduced in Shenzhen Aug 2021: AV trials for passengers & goods 	 AV road testing & AV liability included L5 is not included Other China regions may follow For qualified companies; with safety driver
Russia	 Allowed AV testing from November 2018 Release plans for updated AV testing in May 2021 Yandex is AV leader: robotaxis, sidewalk AVs 	 Including driverless AVs No public data available yet Over 7M AV test miles as of May 2021
Japan	 New RTVA & RTA regulation allows L3 L4 testing is permitted under RTA 	 Took effect on April 1, 2020 Japan likely to use ISO 22737 LSAD

Standards & Regulation Impacting AVs

Standard/ Regulation/Other

- ISO 26262Functional safety standardASIL ratings: A, B, C, D
- UNECE WP.29 Cybersecurity & OTA requirements
 - Hardware-protected security
- - GRVA/2019/2 cybersecurity
 - Mitigating AV risk due to system failure
 - Decision making for SAE L3-L4-L5
 - Interoperability Format, Safety Analysis
 - Automated-driving—software standard
 - Safety check list for AV designs
 - Automated Vehicle Safety Consortium
 - Safety First for Automated Driving

Focus

- Safety-critical embedded systems: ADAS
- Becoming a standard for processor chips too
- Regulation, including type-approval rules
- ► For propulsion, braking, steering, security, safety
- Supported by 26 OEMs & 20 T-1s; Feb 2020 draft
- Formal UN standard; may take effect Sep 2020
- Safety of the intended functionality (SOTIF)
- Rule-based mathematical models for AV decisions
- Safety Verification of IP, SoC & Mixed Signal ICs
- Limited to safety aspects of AV software
- Build the safety case for an AV design: L4-L5
- Safety principles for SAE Level 4 and 5
- OEM/Tier-1 consortium; White paper on AVs

Source: Egil Juliussen; September 2021

SAE J3101

UN WP.29

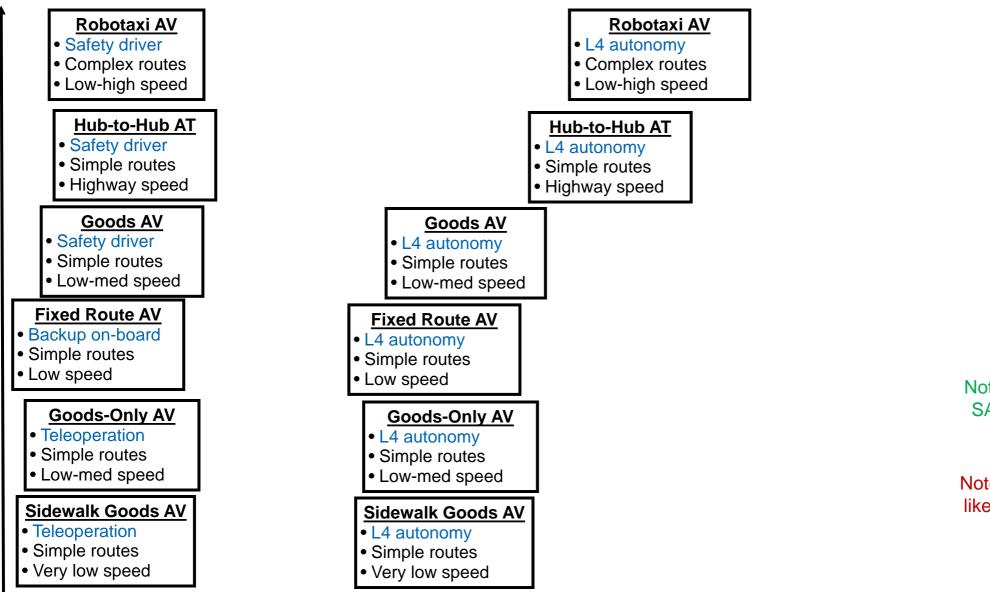
ISO 21448

IEEE P2846

IEEE P2851

IEEE P1228

SAE & OEMs


UL 4600

SaFAD

SOTIF=Safety of the Intended Functionality; UL=Underwriters' Lab; UN=United Nations

AV Complexity

AV Use Cases: Deployment

<u>Personal AV</u>
L4 autonomy
Complex routes
Low-high speed

Note: Only for SAE L4 AVs

Note: Teleoperation is likely in all regulation

2021-22

2023-24 Source: Egil Juliussen; September 2021

2025-26

2027-28

AT=Autonomous Truck; AV=Autonomous Vehicle

Questions

Contact info: LinkedIn: Egil Juliussen | LinkedIn

Content by Egil Juliussen | EE Times